Snowmass 2021 EF09 - BSM

More general explorations

Tulika Bose, Zhen Liu, Simone Pagan Griso

https://snowmass21.org/energy/bsm_general

July 22nd 2020 Energy Frontier Workshop

EF09 - BSM: General exploration

SNOWMASS-EF-09-BSM_GENERIC@FNAL.GOV

Twiki Indico

Slack: <u>ef09-bsm-generic</u>

- This topical group aims to study the sensitivity of Beyond Standard Model (BSM) phenomena for future experiments in the energy frontier.
 - Particular emphasis is given to signatures that appear in a large variety of BSM extensions.

Mailing-list	SNOWMASS-EF-09-BSM_GENERIC@FNAL.GOV (instructions)
Slack channel	ef09-bsm_generic (instructions)
Next Event	July 20th-22nd, EF workshop: Open Questions & New Ideas, minutes
Expression of Interests (EOI) form	https://forms.gle/1freqMHfTjAobga86
Current EOI	List of Active Proposals agreed to share, comments welcome

EF09 - BSM: General exploration

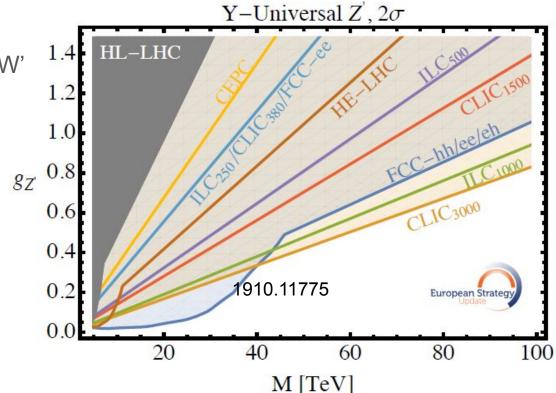
SNOWMASS-EF-09-BSM_GENERIC@FNAL.GOV

Twiki Indico

Slack: <u>ef09-bsm-generic</u>

- This topical group aims to study the sensitivity of Beyond Standard Model (BSM) phenomena for future experiments in the energy frontier.
 - o Particular emphasis is given to signatures that appear in a large variety of BSM extensions.
- 58 Expression-of-interest from individuals/groups aiming for Snowmass studies!
 - useful for initial organization; encouraged to submit a 2-page Letter-of-interests as well
- Topical meetings (~40-100 participants / meeting), typically Fridays @ 11 AM US
 Eastern time:
 - May 8th 12pm (noon) ET, 2020, kick-off meeting (indico page), minutes
 - May 21st 8am ET, General Energy Frontier Kick-off Meeting (indico page)
 - May 29th 12pm (noon) ET, Heavy bosons (indico page), minutes, recording
 - Jun 12th 12pm (noon) ET, General LLPs (indico page), minutes, recording
 - o June 26th 11am ET, New Fermions & Exotica (indico page), minutes, recording
 - July 7th-8th, Preparatory joint topical group meeting, minutes, <u>recording</u>
 - July 15th-16th, Dark Sector and Light Long-Lived Particles, minutes, recording

- Are there new interactions or new particles around or above the electroweak scale? To what extent can future experiments and colliders probe this?
- Long-lived and feebly-interacting particles represent an alternative paradigm with respect to traditional BSM searches. To what extent can future detectors and accelerators probe such particles?
- How do we conduct searches in a more model-independent way?
- How do we compare the results of different experiments in a more model-independent way to ensure complementarity and avoid gap in coverage?
- Is lepton flavor universality violated? What do we learn from high energy/p_T searches?

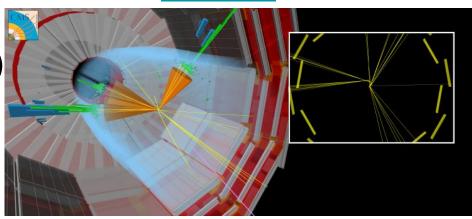

- Are there new interactions or new particles around or above the electroweak scale? To what extent can future experiments and colliders probe this?
- Long-lived and feebly-interacting particles represent an alternative paradigm with respect to traditional BSM searches. To what extent can future detectors and accelerators probe such particles?
- How do we conduct searches in a more model-independent way?
- How do we compare the results of different experiments in a more model-independent way to ensure complementarity and avoid gap in coverage?
- Is lepton flavor universality violated? What do we learn from high energy/pT searches?

New Resonances

- W'/Z' (leptonic) searches
- Leptophobic scenarios (Z'→tt, W' →tb, ...)
- Diboson resonance searches
- Searches with 3rd generation particles (Z' → tau tau)
- Excited quarks/leptons
- Top partners (e.g. Vector-like quarks)
-

Rich future programs

- Resonance v.s. Precision
- Rich phenomenology
- Many different channels


New Resonances: open questions

- Proposed colliders extend significantly the reach for heavy resonances
 - Includes characterization of the resonances and the ability to differentiate between models
 - Hadron and lepton machines are complementary
 - Overview talks during the <u>May 29th EF09 meeting</u>
- Detailed studies w/ full simulation/reconstruction would be useful for validating performance
- Open questions to address including how to:
 - o fully exploit boosted topologies (e.g. VLQ topologies not much studied at 100 TeV)
 - develop state-of-the-art W/top/Higgs taggers
 - Study impact of detector choices: e.g. calorimeter granularity, tracking
 - Improve high p_T b-jet tagging (also boosted b-jet tagging)
 - Better optimize/study tau final states
 - Better estimation of systematic effects, broader set of models w/ diff couplings to generations, lepton/quark...

- Are there new interactions or new particles around or above the electroweak scale? To what extent can future experiments and colliders probe this?
- Long-lived and feebly-interacting particles represent an alternative paradigm with respect to traditional BSM searches. To what extent can future detectors and accelerators probe such particles?
- How do we conduct searches in a more model-independent way?
- How do we compare the results of different experiments in a more model-independent way to ensure complementarity and avoid gap in coverage?
- Is lepton flavor universality violated? What do we learn from high energy/pT searches?

Long-lived Particles (LLPs)

Diverse and active area of interest!

- Many signature-driven searches, depending among other things on:
 - Charge: +-1, neutral, multiply-charged, fractional, m/μ-charged,...
 - Lifetime compared to experiment size
 - o "Peculiar" properties, e.g. "monopoles", quirks, ...
- Massive LLPs highlight the potential to look where we could not look before
 - o using upgraded HL-LHC detectors (e.g. timing detectors, tracker upgrades), future colliders
 - o see May 12th EF09 meeting, Preparatory joint meeting and vesterday's BSM parallel session
- Light LLPs have been the focus of the Physics Beyond Colliders initiative
 - many new important directions can be pursued during Snowmass
 - see Maxim Pospelov's talk during the Cross-Frontier meeting on Light LLPs

Long-lived particles: Open Questions

See talks by <u>Juliette Alimena</u>, <u>Nishita Desai</u>, <u>Jonathan Feng</u>, <u>Chris Hill</u>, <u>Simon Knapen</u> & Brian Shuve

- LLP searches have strong interplay with detector design!
 - Of the uncovered (or less well-covered) signatures, which ones are most demanding in terms of new technologies or experiments needed?
 - how can we take advantage and/or shape future development in detector technology?
 - how to reasonably approach projection for detectors at early stage of design?
- How do we compare future collider options?
 - What are "must-have" LLP signatures (e.g., HSCP, disappearing tracks, displaced vertices...) ?
 - Can we compile a short list of benchmark models?
 - And then test sensitivity to LLP signatures? For varying assumptions of detector performance?
- How do we achieve comprehensive coverage with existing accelerator facilities?
 - Build on and extend the LLP white paper: arXiv 1903.04497
 - o Better exploit upgraded HL-LHC detectors, advanced techniques, new trigger strategies...
 - Exploit the full potential of auxiliary experiments (FASER, milliQan, MATHUSLA, MOEDAL,...)
 - Explore novel forward facilities/detectors with unique physics cases for LLPs...

- Are there new interactions or new particles around or above the electroweak scale? To what extent can future experiments and colliders probe this?
- Long-lived and feebly-interacting particles represent an alternative paradigm with respect to traditional BSM searches. To what extent can future detectors and accelerators probe such particles?
- How do we conduct searches in a more model-independent way?
- How do we compare the results of different experiments in a more model-independent way to ensure complementarity and avoid gap in coverage?
- Is lepton flavor universality violated? What do we learn from high energy/pT searches?

https://lhco2020.github.io/homepage/

Model-agnostic searches

- Ensure widest potential for discovery is probed
 - qualitative differences for lepton vs hadron colliders
- Might be useful to survey existing and future (R&D) methods
 - explore machine learning methods?
- Interplay with detector design
 - ensure emerging physics ideas are not severely limited by "arbitrary" design choices but can exploit in full each accelerator's potential

Synergy with Theory Frontier & Computational Frontier

KC Kong

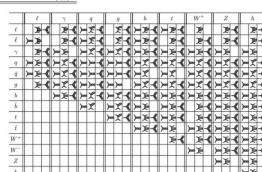
	l	γ	q	9	b	t	W^{+}	Z	h
l	(1, 2)*	[1,1]*	(3, 1(4)/3)◊♡	[8, 1]*	(3, 4/3)◊♡	(3, 1/3)◊♡	[1,0]*	[1,1]*	[1, 1]*
Ī	(1,0)	$[1, -1]^*$	(3, -2(5*)/3) ^{♦♥}	$[8, -1]^*$	(3, -2/3)◊♡	$(3, -5/3)^*$	$[1, -2]^*$	$[1, -1]^*$	$[1, -1]^*$
Y	[1, 1]*	(1,0)	[3, 1(-2)/3]	(8,0)	[3, 1/3]	[3, -2/3]	(1, -1)	(1,0)	(1,0)
q	(3, 1(4)/3) ♦♥	$[\bar{3}, 1(-2)/3]$	(3, -1(2)(-4)/3)	$[\bar{3}, 1(-2)/3]$	(3, -1(2)/3)	(3, -1(-4)/3)	$[\bar{3}, -2(-5^*)/3]$		$[\tilde{3}, 1(-2)/3]$
\bar{q}	(3, 2(5°)/3) O	[3, -1(2)/3]	(1(8), 0(-1))	[3, -1(2)/3]	(1(8), 0(-1))	(1(8), 0(-1))	$[3, -1(-4^*)/3]$	[3, -1(2)/3]	[3, -1(2)/3]
g	[8, 1]*	(8,0)	[3, 1(-2)/3]	(1(8), 0)	$[\bar{\bf 3}, 1/3]$	$[\bar{3}, -2/3]$	(8, -1)	(8,0)	(8,0)
b		$[\bar{3}, 1/3]$	(3, -1(2)/3)	$[\bar{3}, 1/3]$	(3, 2/3)	(3, -1/3)	$[\bar{3}, -2/3]$	[3, 1/3]	[3, 1/3]
\bar{b}			(1(8), 0(-1))	[3 , -1/3] $[\mathbf{\bar{3}}, -2/3]$	(1(8), 0)	(1(8), -1)	$[3, -4/3]^*$ $[\mathbf{\bar{3}}, -5/3]^*$	$\begin{bmatrix} 3, -1/3 \\ \mathbf{\bar{3}}, -2/3 \end{bmatrix}$	[3 , -1/3] $[\mathbf{\bar{3}}, -2/3]$ [3 , 2/3]
t				$[\bar{3}, -2/3]$	(3, -1/3)	(3, -4/3)	$[\bar{3}, -5/3]^*$	$[\bar{3}, -2/3]$	$[\bar{3}, -2/3]$
\bar{t}					(1(8), 1)	(1(8), 0)	[3, -1/3]	$[3, \frac{2}{3}]$	[3, 2/3]
V^{+}						[3, -5/3]*	$(1,-2)^*$	(1, -1)	(1, -1)
V^-							(1,0)	(1,1)	(1,1)
Z								(1,0)	(1,0)
h									(1,0)

(): boson resonance

[]: fermionic resonance

*: no possible initial state at the LHC

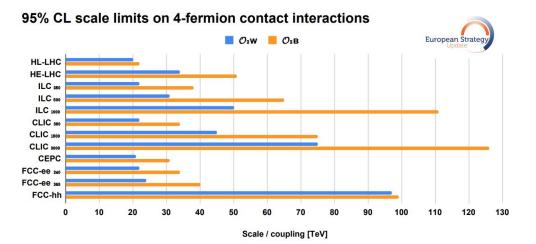
$$\Delta B = 1$$
 (if couples to q / g)


Possible (QCD, EM) quantum numbers of each 2-body resonance

indicates the existence of a resonant production via treelevel decay coupling, loop-induced processes involving the decay coupling, or the inclusion of additional couplings to quarks / gluons (allowed by quantum numbers).

Y, E, P, or Indicate the leading production mode in association with 1, 2, 3 and 4 SM particles using the same coupling for production and decay (in 4 flavor scheme).

indicates the unavoidable existence of a pair production mode.


Craig, Draper, Kong, Ng, Whiteson 1610.09392

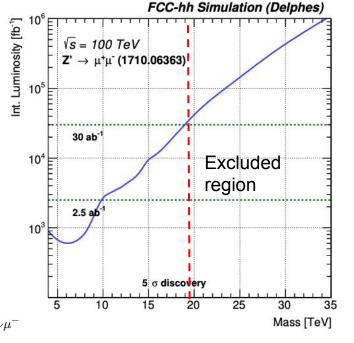
- Are there new interactions or new particles around or above the electroweak scale? To what extent can future experiments and colliders probe this?
- Long-lived and feebly-interacting particles represent an alternative paradigm with respect to traditional BSM searches. To what extent can future detectors and accelerators probe such particles?
- How do we conduct searches in a more model-independent way?
- How do we compare the results of different experiments in a more model-independent way to ensure complementarity and avoid gap in coverage?
- Is lepton flavor universality violated? What do we learn from high energy/pT searches?

Open Questions

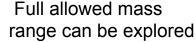
- How do we compare the results of different experiments in a more model-independent way to ensure complementarity and avoid gap in coverage?
 - Reinterpretations? Use carefully chosen simplified models? [See yesterday's discussion.]
 - Explore BSM effects via global EFT fits ? [w/ EF04]

Providing answers to the above focus question is an important goal for the EF Snowmass studies:

Includes collaboration with other Frontiers in some cases


14

- Are there new interactions or new particles around or above the electroweak scale? To what extent can future experiments and colliders probe this?
- Long-lived and feebly-interacting particles represent an alternative paradigm with respect to traditional BSM searches. To what extent can future detectors and accelerators probe such particles?
- How do we conduct searches in a more model-independent way?
- How do we compare the results of different experiments in a more model-independent way to ensure complementarity and avoid gap in coverage?
- Is lepton flavor universality violated? What do we learn from high energy/pT searches?


Lepton flavor universality: high-p_⊤ searches

- Top quark FCNC effects (EF03)
- Leptoquarks (EF08)
- Explore searches looking for large deviations in tau tau (w/o narrow peak) and ttbar final states

- Flavor anomaly inspired Z' models
 - studies done using model where Z' only couples to b/s quarks (g_{sb}) and to muons (g_{uu}).
 - Additional studies (w/ different model assumptions) are very welcome!

https://arxiv.org/pdf/1902.11217.pdf

Conclusions

- Goal to sample a vast and rich physics program for BSM physics at future energy-frontier experiments
 - can't be comprehensive, instead aim to give a flavor of the richness of the program and try to communicate complementarity of different search strategies and reach
 - o ranging from "standard candles" (q*, I*, Z', T, ..) to more exotic models (dark-sector, ALPs, ...)
- We're still in the initial phase of collecting input and interest, invite people to form new collaborations for specific studies.
 - o ... and no, it's not too late by any means to get engaged! Submit your <u>Eol</u> or <u>Lol</u>!
- Large interplay with other EF groups and frontiers yielding to combined meetings and mini-workshops
 - ultimately need to ensure results can be used in the report as they best fit without the need of large last-minute modifications or too-rough assumptions
 - Interplay with detector technology to ensure we're well equipped to find the the BSM physics that Nature has chosen!